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1. INTRODUCTION

Recently [1], an eigenvalue independent partitioning [2] approach was proposed
for calculating, simultaneously, several eigenvalues and eigenvectors of a large
Hermitian matrix. Within the context of this approach, several, related, simple
. algorithms were considered for the ordinary eigenvalue problem, HX = XA, for the
case where there is a large variation in diagonal elements compared to individual off-
diagonal elements, and the results of calculations with these were reported. The two
algorithms referred to as “generalized Nesbet” were extended to apply to the
generalized eigenvalue problem

HX = SXA, (1)

where H and S are Hermitian, and S positive definite. However, no calculations with
these were reported. Moreover no generalization was given of the simplest, and
apparently most satisfactory algorithm of those considered, that referred to as
“simple diagonal Newton—Raphson” (SDNR). This note describes an appropriate
generalization of this algorithm to the generalized eigenvalue problem (1), and reports
some results of test calculations with this, and with the generalized Nesbet algorithms
described previously. Further details of the general approach, and comparison to
other approaches, can be found in [1].

2. THE GENERALIZED ALGORITHM

In eigenvalue independent partitioning the basis vectors, and the eigenvectors, are
partitioned into two sets, respectively, of dimensions n, and n;, =n —n,, where n is
the dimension of the eigenvalue equation. With respect to this partitioning, the
matrices in (1) take the form

H=— [HAA H,p ] S = [ Sia SAB] X = [ Xua XAB] @)
Hp, Hpy, Sps Spp Xpq Xpg
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The fact that the eigenvector matrix X, is non-singular ensures that X, and X,, are
non-singular for at least one partitioning of the basis, so that X can be factored in the
manner '

X=TX, (3)

with

and

o,
L
S

Te [1 4 h ]
f 1y
where f=X,,X,! and h= X, X;5. The generalized eigenvalue equation (1) can
accordingly be rewritten as

GX =gk4, (6)
where
G=THT, g=T'sT, (7

7' being the adjoint.
The matrices f and / are to be determined to make the off-diagonal blocks of G
and g zero:

GBA =Hy, + HBBf + hT(HAA + HABf) =0, (8)
884 =Sg4 + Spsf + hT(SAA +8,5/)=0,

The original n-dimensional eigenvalue equation is thereby reduced to two eigenvalue
equations of the smaller dimensions n, and n,. One of these,

G Xyu= 84X,y AW, %
where G, and g, are the diagonal blocks in (7),

GA = HAA + HABf + fTHBA + fTHBBJ{;

i (10)
84= S84+ Sl + S Sps+ [ 'Spsls
can be solved for the n, eigenvalues of interest, together with the projected eigen-

vectors X ,,. The remaining components of the eigenvectors are then given, according
to Eq. (3); by Xy, =fX,,.
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A single condition on f, namely
D(l)(f)zHBA + Hypf — (Sgq + Spsf) H,(41) =0, (11)

where A" =(S,, +S./) ' (H, + Hyyf), can be obtained on eliminating #
between the two conditions (8). The “diagonal,” and “full” generalized Nesbet
alorithms (DGNS' and FGNS), developed previously [1], are based on a similar
condition, D®(f)=0, obtained by replacing H'" in (11), by a more accurate
estimate, H? = g;'G,. However, a simpler algorithm can be based directly on the
pair of conditions (8), treating both f and % as unknowns, and this is the approach
developed here.
The generalized Newton—Raphson equations corresponding to Eqgs. (8) are

HLof + 6n'H, = — Gy,

_ (12)
iaf + 01’8, = — 84>
where
ﬁBzHBB + Hyyh, ﬁA =H, +H,;f, (13)
‘§B =Spp+ Sty §A =8,41 S/
On retaining only the diagonal parts, in order to find the individual changes df,,, d#,,

which reduce the individual elements G, and g, approximately to zero, Eqs. (12)
reduce to

[(ﬁz)w (FIA),,Haf‘,, ]:_ [G] (14)

('S—';)ao (STA )rr ah;ko- go'r

Here Greek letters label basis elements in the B-space, italic letters those in the A4-
space. Solution of these simultaneous equations gives the iteration formulas

6fa‘r = [Gar(S—A)rr - gar(ﬁA)rr]/Aars (15)
(5hT)ar = [Gar(‘s_'lt)ao - gu‘r(ﬁ;)o‘a]/Aor’

where

Aar = (S;Ii)aa (ﬁA)rr - (ﬁ;)aa (§A)rr' (16)

Only the diagonal elements of the large matrixes A, and S, are required. The
auxiliary quantities, #,, S,, H,, S, being linear in f or &, are easily updated as the
calculation proceeds, element by element through f and A. Precise computational
details are given in the appendix. The algorithm is referred to here as “Simple

UIn [1], 9% in Eq. (3.17) for DGN should read %, and Y1 in (4.13) for DGNS should
read —Y "7, The same sign changes are required in the formula for 4, in Appendices 2 and 4.
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Diagonal Newton—Raphson with Overlap” (SDNRS). For n,» n,, of the order
2n,nj computational operations are required per iterative sweep through the eiements
of f/ and A. This is twice the number of operations required for an ordinary eigen-
value equation, but the same order as for algorithms DGNS and FGNS [1].

A refinement of the algorithm is obtained on replacing the Newton-Raphson

equations (12) by the exact equations for df and dh. These are simply
H35f+ 5hTﬁA+5hTHA35f:_GBAa {1_7)
Syof + Oh'S, + Oh'S 15 = — g,5. |

The same diagonal approximation made before leads to a pair of simultaneous
quadratic equations for 6k, and dh,,, from which a quadratic equation for &f,, is
obtained

ar?

Adf:, + B, + C=0, (18)
with coefficients

A= Hro-(s_‘;)gg - Sra(gg)ao"
lejo.,‘f‘HmGgr_SroGor’ (39)
C= go-r(HA )rr - Gar(S'-A )rr g

The desired correction df,, is the root of smallest magnitude. Given this, the
correction 6#,,, can be found from

1)y =—1Gop + (HY)\yo F o )/ [(H )y + H, 6 0] (20)

This refinement, denoted QDNRS here (Q = quadratic), may exhibit a significantly
different rate of convergence from SDNRS initially, that is when Jf and 6k still have
large elements. The distinction disappears as the solution is approached. The smallest
root of Eq. (18) then tends to df'=— C/B ~ —C/4 which, correctly, coincides with
Eq. (15). For n, > n,, QDNRS still represents of the order of 2n,7; computational
operations per sweep through f and A.

3. APPLICATION TO A MODEL PROBLEM

A series of calculations were carried out using the four algorithms SDNRS,
QDNRS, DGNS, and FGNS. The matrix H in Eq. (1) was of the type used in
previous calculations [1,3], in which all off-diagonal elements are unity. The
diagonal elements are chosen to give various distributions of eigenvalues.
Permutations of these diagonal elements correspond to changes in the partitioning of
the basis space. The results reported here are for relatively. small matrices.
Unpublished calculations with matrices up to order 12000, for S =1,, have shown



24 COOPE AND SABO

that the asymptotic convergence rates decrease only slowly for increasing 7, and
appear to level out for large n.

The matrix S arises as the overlap matrix (Gram matrix, metric tensor), S;; =
(9;, 9,), of some underlying set of basis vectors and, as such, must be positive. The
following useful model matrix was used here:

a a’® a" !
a 1 a .- a7l

S(a)= ) ) ) .- (21)
an.—l an.—Z an.~3 1

This is positive definite for all |a| < 1. It resembles the quantum mechanical overlap
matrix for a linear chain of atoms, having overlaps falling off exponentially, with
distance (S;=a'""’"), and it also serves to model a quantum mechanical
configuration interaction calculation having a non-orthogonality which decreases with
energy differences. For a = 0 the orthonormal case (S = 1,) is recovered, while as a
approaches the maximum value unity, the eigenvalue equation becomes highly ill
conditioned, becoming singular for |a|= 1.

The ill-conditioning of the equations is caused by the approach of the underlying
basis vectors to linear dependence, as |a| increases, and is measured by the approach
of the eigenvalues of S to zero. For the matrix (21), zero eigenvalues can only occur
for |a| = 1. The positive definiteness for |a| < 1 follows by continuity from a = 0. All
but one of the eigenvalues is approaching zero, however, as |a|— 1, and for ja| =1, S
is of rank 1, and the underlying n-dimensional basis space has degenerated to a one-
dimensional space.

For large n, the distribution of the eigenvalues of (21) which is independent of the
sign of q, is essentially the same as for the corresponding circulant matrix [5], of the
same dimension. This models a quantum mechanical ring of atoms (with periodic
boundary conditions) instead of a linear chain. For »— oo these eigenvalues are
given (for |a| < 1) by

S;=1+2a Cos 8, + 2a* Cos 20, + ...,
=(1-a*)/[1—2aCos 6, + o?], (22)

where 8;=2zj/n, (j=1,2,.,n). They range from S, =(1—|a|)/(1+]al]), to
S'max = 1/Smin» being concentrated towards the lower limit. Figure 1 illustrates the
distribution for a = 0.6.

Table 1 lists asymptotic convergence rates for a selection of these calculations, that
is, the average factors by which appropriate convergence monitors decrease per
iteration, once linear convergence is established.” The smaller these numbers the

?Since for ny,»n,, a single iteration in all these algorithms represents of the order of 2n,n2
computations, these asymptotic convergence rates represent relative cpu time requirements, and have
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Fic. 1. Normalized distribution of eigenvalues for the overlap matrix (21), with overlap parameter
a=0.6

faster the convergence. The /, convergence monitors were [ D|, = (3", ,|D, |*)"/* for
the generalized Nesbet algorithms, and (|G, |13 + all g5,03)"* for SDNRS and
QDNRS. The constant a, which could be considered necessary, in some applications,
for dimensional consistency, was here chosen as unity throughout. No results are
given in the table for QDNRS, since its performance was virtually identical to that of
SDNRS in the cases presented.

In all cases reported, the starting approximation was /= & = 0. The use, instead, of
the exact f and A for an m-dimensional truncated eigenvalue problem (2, < m < #),
as the starting approximation for the n-dimensional problem, was of little if any value
in improving convergence. The use of the exact /(= — A") for the eigenvalue equation
without overlap, i.e., for S = 1,, was also of litle value. A detailed analysis [4] of the
convergence is consistent with these observations, predicting that the accuracy of the
starting approximation normally has little bearing on the final convergence rate

intrinsic significance. Absolute cpu times are not given since, with a variety of computers, programming
languages, and compilers now in use, timings for a particular program on a particular machine have
relative meaning only. They are subject to non-quantifiable influences such as programming style,
compiler ‘design, and machine architecture, which have litle relation to the underlying mathematiéal
features of the calculation being done.
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established. Calculation 6 of Table I gives an instance in which DGNS is divergent
even when started with || D[, < 1072, i.e., virtually at the exact solution, indicating
that the norm of the first order error constant matrix in this case, and for the basis
used, is greater than unity at the exact solution.

- On the other hand significant improvement in convergence may be obtained by a
preliminary partial diagonalization. In contrast to a mere change of starting approx-
imation, this is a change of basis, in which m basis vectors are replaced by the eigen-
vectors of an m-dimensional truncated eigenvalue problem. The m-dimensional blocks
of H and S include, but are larger than, H,, and Hy,. These calculations are listed
under an asterisk in Table I. Theoretical considerations suggest that improvement in
asymptotic convergence rates is likely only if m is a substantial fraction of n.
However, the initial behaviour of the calculation may be greatly improved even for
small m. For n, €< m < n, the transformation to partially diagonal form, and subse-
quent back transformation of f, requires only of the order of m?n, computational
operations, a fraction of the number for one iteration (n,n3), so that it is practicable
to take m ~ (n ny)"~

While rates of convergence decrease only slowly with increasing 7, and n, they
decrease rather. rapidly with increasing overlap parameter ¢. For calculations of the
lowest n, eigenvalues, the effective upper limit for convergence to occur, without
preliminary partial diagonalization, is ¢ = 0.6. Sets of n, eigenvalues other than the
n, lowest or highest, can be obtained by appropriate partitioning of the basis,
equivalent here to a reordering of the diagonal elements, but as « increases beyond
0.2 the convergence of these calculations becomes problematical, especially when
non-consecutive subsets of eigenvalues are sought (calculations 9-12 in Table I).
Preliminary partial diagonalization is particularly useful in these cases in improving
convergence rates, and especially initial behaviour.

The last eight calculations in Table 1 illustrate the point that near degeneracy of
eigenvalues presents no problem whatever, provided all nearly degenerate, or
degenerate eigenvalues are included in the set of n, eigenvalues calculated (or in the
complement). In contrast, the corresponding calculations with Nesbet’s algorithm for
the single lowest eigenvalue, to which the generalized Nesbet algorithms reduce in the
case n, = 1, do not converge. The practical advantages of determining an entire set of
nearly equal eigenvalues simultaneously, rather than one at a time successively, have
been well illustrated for the ordinary eigenvalue problem as well, both through our
approach [1] and in recent work of Liu {6].

When convergence is straightforward, that is, when « is small, and the ecigenvalues
to be calculated are well separated from the other eigenvalues, these several
algorithms exhibit similar rates of convergence. However, for the calculations in
Table 1 it is seen that the algorithm outlined in this note (SDNRS) is generally more
reliable than the other two. One reason is probably the more frequent updating of the
very simple quantities appearing in the iteration formulas. While SDNRS is simple
and requires little storage, it is clear that more powerful algorithms are possible,
within he general paritioning approach since the knowledge of the successive
calculated correction “vectors” ¢f and &k or, alternatively, knowledge of the
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successive calculated residual “vectors” G, and g,,, is not being fully exploited in
the algorithms considered here. The exploitation of the knowledge of successive
vectors is a feature of Davidson’s {6, 7] powerful method. We have formulated 4
number of such extrapolation strategies, but comparative tests of various alternatives
have not yet been carried out.

APPENDIX: CoOMPUTATIONAL DETAILS

Simple Diagonal Newton—Raphson Algorithm with Overiap (SDNRS)

Initialization:

=0, ht=0,
H,=H,,, S, =5,4
H’I‘dlag deag §‘1‘dxag Sdlag
Then:
Gar = Ho-r + Z Hapfpr + Z has(ﬁA)sr’
- So‘r+ Z Sopfpr+ Z h (§A)sr7
p=1
Aar = (SB)aa (HA )rr - (H;)GG. (SA)rr 9
5far = [Gar(gA)rr - g«rr(l7 )rr]/Aar’
5}121‘ = [ (S )ao‘ gar(HT)aa]/Aar'
r=l, fy,
up date:
o=1,.,H.

(Hy)se= (Hy)yr + Hyo o,
(s (Sa)g + S50,
(H})oo = (HY)gy + 61T, H, g
(SDoo = (Shoo + 61,4,
Jor= Jor + Fors
B, - hl, + Sh!,.

=1y, #,,
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