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1. INTRODUCTION 

Recently [ 11, an eigenvalue independent partitioning [2] approach was proposed 
for calculating, simultaneously, several eigenvalues and eigenvectors of a large 
Hermitian matrix. Within the context of this approach, several, related, simple 
algorithms were considered for the ordinary eigenvalue problem, HX=XA, for the 
case where there is a large variation in diagonal elements compared to individual off- 
diagonal elements, and the results of calculations with these were reported. The two 
algorithms referred to as “generalized ,Nesbet” were extended to apply to the 
generalized eigenvalue problem 

HX = SXA, (1) 

where H and S are Hermitian, and S positive definite. However, no calculations with 
these were reported. Moreover no generalization was given of the simplest, and 
apparently most satisfactory algorithm of those considered, that referred to as 
“simple diagonal Newton-Raphson” (SDNR). This note describes an appropriate 
generalization of this alg,orithm to the generalized eigenvalue problem (l), and reports 
some results of test calculations with this, and with the generalized Nesbet algorithms 
described previously. Further details of the general approach, and comparison to 
other approaches, can be found in [ 11. 

2. THE GENERALIZED ALGORITHM 

In eigenvalue independent partitioning the basis vectors, and the eigenvectors, are 
partitioned into two sets, respectively, of dimensions nA and nB = n - nA, where IZ is 
the dimension of the eigenvalue equation. With respect to this partitioning, the 
matrices in (1) take the form 

(2) 
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The fact that the eigenvector matrix X, is non-singular ensures that X,, and X,, are 
non-singular for at least one partitioning of the basis, so that X can be factored in the 
manner 

x= TX, (31 
with 

and 

where f = pI,,X,-,’ and h = XABX;i. The generaiized eigenvaiue equation (I) can 
accordingly be rewritten as 

Gif=gifA, 09 

where 

G = T’HT, g = Y&T, (7:) 

Tt being the adjoint. 
The matrices f and h are to be determined to make the ~~-diagonal bloc 

and g zero: 

The original n-dimensional eigenvalue equation is thereby reduced to two ~i~e~~a~~~ 
equations of the smaller dimensions n, and n,. ne of these, 

G,X,, = g.&,&? 496 

where G, and g, are the diagonal blocks in (7), 

GA = HAA f H.uJ + f ‘H,A f StHmA 
~A=SAA +SAB.~+~'SBA +.f'Sm& 

can be solved for the n, eigenvalues of interest, together with the projected eigen- 
vectors X,, . The remaining components of the eigenvectors are then given, ac~~r~~~g 
to J% (31, by X,, = fx,, . 
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A single condition on f, namely 

D”‘(f) = HBA + HBBf - (S,, + S,f) Qy = 0, (11) 

where I?$r’ = (S,, + S,,f)- ’ (HAA + H&‘), can be obtained on eliminating h 
between the two conditions (8). The “diagonal,” and “full” generalized Nesbet 
alorithms (DGNS’ and FGNS), developed previously [ 11, are based on a similar 
condition, D’*‘(J) = 0, obtained by replacing fiy’ in (ll), by a more accurate 
estimate, &*) = ga ‘G, . However, a simpler algorithm can be based directly on the 
pair of conditions (8), treating both f and h as unknowns, and this is the approach 
developed here. 

The generalized Newton-Raphson equations corresponding to Eqs. (8) are 

l?$i-f + Gh+il, = - G BA, 

$Sf +Gh+rA=-g BA ) 

(12) 

where 

ff~ = HBB + HBA h, 

&I = s,, + s,, h, 

BA = HAA + HABf; 

sA = SAA + SAJ 
(13) 

On retaining only the diagonal parts, in order to find the individual changes Sf,,, dh,, 
which reduce the individual elements G,, and g,, approximately to zero, Eqs. (12) 
reduce to 

(@i)o, (‘qA>n’ 

<%m <s7,>rr 
(14) 

Here Greek letters label basis elements in the B-space, italic letters those in the A- 
space. Solution of these simultaneous equations gives the iteration formulas 

sf,r = [Gm(SA)r, - &,(‘Ahrl/&, 

W+Lr = - P%,($),, - g,r~~i!Ll/~,r~ 
(15) 

where 

Only the diagonal elements of the large matrixes fiB and gB are required. The 
auxiliary quantities, il, , gA, ir,, s,, being linear in f or h, are easily updated as the 
calculation proceeds, element by element through f and h. Precise computational 
details are given in the appendix. The algorithm is referred to here as “Simple 

‘ In [ 11, fcnew)+ in Eq. (3.17) for DGN should read -fyiw)t, and YjlnJ’“j+ in (4.13) for DGNS should 
read -Yyz”’ f ” . The same sign changes are required in the formula for A,, in Appendices 2 and 4. 
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Diagonal Newton-Raphson with Overlap” (SDNRS). For nB % n,, of the order 
2n, ni computational operations are required per iterative sweep through the ~~~rne~ts 
of f and h. This is twice the number of operations required for an ordinary eigen- 
value equation, but the same order as for algorithms DGNS and FGNS [ I]. 

A refinement of the algorithm is obtained on replacing the Ne~o~-Ra~~so~ 
equations (12) by the exact equations for Sf and 6h. These are simply 

i& Sf + 6h+i& + 6h+H,, Sf == - GBA, 

i& 6f + Gh+S, + Gh+S,, Sf = - g,, . 
(1-J) 

The same diagonal approximation made before leads to a pair of sirnu~ta~~~~s 
quadratic equations for ah,, and Sh,,, from which a quadratic equation for (ss,r is 
obtained 

with coefficients 

The desired correction Sf,, is the root of smallest magnitude. Given this, the 
correction ah,., can be found from 

This refinement, denoted QDNRS here (Q = quadratic), may exhibit a sign~~~a~t~~ 
different rate of convergence from SDNRS initially, that is when df and 6h still have 
large elements. The distinction disappears as the solution is approached. The smallest 
root of Eq. (18) then tends to Sf = - C/B N -C/d which, correctly, coincides with 
Eq. (15). For IZ, > nA ) QDNRS still represents of the order of 2n, ai corn 
operations per sweep through f and h. 

3. APPLICATION TO A MODEL PROBLEM 

A series of calculations were carried out using the four algorithms S 
QDNRS, DGNS, and FGNS. The matrix H in Eq. (1) was of the type 
previous calculations [ 1,3], in which all off-diagonal elements are zlni 
diagonal elements are chosen to give various distributions of eigenvaiues. 
Permutations of these diagonal elements correspond to changes in the partitioning of 
the basis space. The results reported here are for relatively small matrices. 
Unpublished calculations with matrices up to order 12000, for S = I,,, have shown 
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that the asymptotic convergence rates decrease only slowly for increasing n, and 
appear to level out for large 12. 

The matrix S arises as the overlap matrix (Gram matrix, metric tensor), S, = 
(tii, #j), of some underlying set of basis vectors and, as such, must be positive. The 
following useful model matrix was used here: 

1 a a* . . . an-1 

1 a 
S(a)= 4 : : 

. . . ane2 

L i 

(21) 

a n-1 a n-2 a n-3 . . . 1 1. 

This is positive definite for all 1 a 1 < 1. It resembles the quantum mechanical overlap 
matrix for a linear chain of atoms, having overlaps falling off exponentially, with 
distance (S, = aii-j’), and it also serves to model a quantum mechanical 
configuration interaction calculation having a non-orthogonality which decreases with 
energy differences. For a = 0 the orthonormal case (S = 1,) is recovered, while as a 

approaches the maximum value unity, the eigenvalue equation becomes highly ill 
conditioned, becoming singular for 1 a I= 1. 

The ill-conditioning of the equations is caused by the approach of the underlying 
basis vectors to linear dependence, as ]a] increases, and is measured by the approach 
of the eigenvalues of S to zero. For the matrix (21), zero eigenvalues can only occur 
for ]a I = 1. The positive definiteness for /aI < 1 follows by continuity from a = 0. All 
but one of the eigenvalues is approaching zero, however, as ] a I + 1, and for /a I = 1, S 
is of rank 1, and the underlying n-dimensional basis space has degenerated to a one- 
dimensional space. 

For large ~1, the distribution of the eigenvalues of (21) which is independent of the 
sign of a, is essentially the same as for the corresponding circulant matrix [.5], of the 
same dimension. This models a quantum mechanical ring of atoms (with periodic 
boundary conditions) instead of a linear chain. For A+ co these eigenvalues are 
given (for Ial < 1) by 

Sj = 1 + 2a COS ej + 2a2 COS 2ej + . . . . 

= (1 - a’)/[ 1 - 2a Cos e, + a2], (24 

where ej = 2nj/n, (j = 1, 2 ,..., n). They range from Smin = (1 - I a])/( 1 + ]a I), to 
s max = l/Smin, being concentrated towards the lower limit. Figure 1 illustrates the 
distribution for a = 0.6. 

Table 1 lists asymptotic convergence rates for a selection of these calculations, that 
is, the average factors by which appropriate convergence monitors decrease per 
iteration, once linear convergence is established.* The smaller these numbers the 

* Since for nB % nA, a single iteration in all these algorithms represents of the order of 2n,ni 
computations, these asymptotic convergence rates represent relative cpu time requirements, and have 
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FIG. 1. Normalized distribution of eigenvalues for the overlap matrix (21), with overlap parameter 
cl=@6 

faster the convergence. The I, convergence monitors were l\D /I2 = (CU,rlP;)U,rji)i’Z fan 
the generalized Nesbet algorithms, and (11 G,, 11: + a // g,, //i)1’2 for SDN 
QDNRS. The constant a, which could be considered necessary, in some a~~~~~~~~~~s~ 
for dimensional consistency, was here chosen as unity throughout. No results are 
given in the table for QDNRS, since its performance was virtually identical to that of 

NRS in the cases presented. 
n all cases reported, the starting approximation was f = h = 

Ihe exact f and h for an m-dimensional truncated eigenvalue 
as the starting approximation for the n-dimensional problem, was of little if a 
in improving convergence. The use of the exactf( = - h’) for the eigenvalue 
without overlap, i.e., for S = I,, was also of little value. A detailed analysis [4] of the 
convergence is consistent with these observations, predicting that the accuracy of the 
starting approximation normally has little bearing on the final ~o~ve~ge~~e rate 

intrinsic significance. Absolute cpu times are not given since, with a variety of computers, ~rQgr~rn~n~ 
languages, and compilers now in use, timings for a particular program on a particu!ar machine have 
relative meaning only. They are subject to non-quantifiable influences such as programming style: 
compiler design, and machine architecture, which have iitle relation to the underlying mathematical 
features of the calculation being done. 
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established. Calculation 6 of Table I gives an instance in which DGNS is divergent 
even when started with ]]D]], < lo-‘*, i.e., virtually at the exact solution, indicating 
that the norm of the first order error constant matrix in this case, and for the basis 
used, is greater than unity at the exact solution. 

On the other hand significant improvement in convergence may be obtained by a 
preliminary partial diagonalization. In contrast to a mere change of starting approx- 
imation, this is a change of basis, in which m basis vectors are replaced by the eigen- 
vectors of an m-dimensional truncated eigenvalue problem. The m-dimensional blocks 
of H and S include, but are larger than, HAA and H,,. These calculations are listed 
under an asterisk in Table I. Theoretical considerations suggest that improvement in 
asymptotic convergence rates is likely only if m is a substantial fraction of n. 
H‘owever, the initial behaviour of the calculation may be greatly improved even for 
small m. For n, < m < n, the transformation to partially diagonal form, and subse- 
quent back transformation of f, requires only of the order of m2n, computational 
operations, a fraction of the number for one iteration (n, ni), so that it is practicable 
to take m - (n, nB)l’*. 

While rates of convergence decrease only slowly with increasing nA and yt, they 
decrease rather. rapidly with increasing overlap parameter a. For calculations of the 
lowest ~1~ eigenvalues, the effective upper limit for convergence to occur, without 
preliminary partial diagonalization, is a = 0.6. Sets of IZ~ eigenvalues other than the 
n,., lowest or highest, can be obtained by appropriate partitioning of the basis, 
equivalent here to a reordering of the diagonal elements, but as a increases beyond 
0.2 the convergence of these calculations becomes problematical, especially when 
non-consecutive subsets of eigenvalues are sought (calculations 9-12 in Table I). 
Preliminary partial diagonalization is particularly useful in these cases in improving 
convergence rates, and especially initial behaviour. 

The last eight calculations in Table 1 illustrate the point that near degeneracy of 
eigenvalues presents no problem whatever, provided all nearly degenerate, or 
degenerate eigenvalues are included in the set of nA eigenvalues calculated (or in the 
complement). In contrast, the corresponding calculations with Nesbet’s algorithm for 
the single lowest eigenvalue, to which the generalized Nesbet algorithms reduce in the 
case ~1~ = 1, do not converge. The practical advantages of determining an entire set of 
nearly equal eigenvalues simultaneously, rather than one at a time successively, have 
been well illustrated for the ordinary eigenvalue problem as well, both through our 
approach [l] and in recent work of Liu [6]. 

When convergence is straightforward, that is, when 01 is small, and the eigenvalues 
to be calculated are well separated from the other eigenvalues, these several 
algorithms exhibit similar rates of convergence. However, for the calculations in 
Table 1 it is seen that the algorithm outlined in this note (SDNRS) is generally more 
reliable than the other two. One reason is probably the more frequent updating of the 
very simple quantities appearing in the iteration formulas. While SDNRS is simple 
and requires little storage, it is clear that more powerful algorithms are possible, 
within he general paritioning approach since the knowledge of the successive 
calculated correction “vectors” Sf and 6h or, alternatively, knowledge of the 
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successive caiculated residual “vectors” GBA and g,, , is not being fully exploited in 
the algorithms considered here. The exploitation of the knowledge of successive 
vectors is a feature of Davidson’s [6, 71 powerful method. We have formulated a 
number of such extrapolation strategies, but comparative tests of various alternatives 
have not yet been carried out. 

APPENDIX: COMPUTATIONAL DETAILS 

Simple Diagonal Newton-Raphson Algorithm with Overlap ~§~N~S~ 
Initialization: 

f =o, h’=O, 

g* =ffAA, 
Ijtdiag = Ijdias 

B BB 3 
$‘fdiag = 3;;“. 

22 

Then : 

up date: 
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